The generator matrix

 1  0  0  1  1  1  1  1  1  1  6  1 X+6  1  1  1 2X+6  1 X+3  1  1  1  1 2X+3  1  3 2X+6  1  1  X  1  1  1  1  1  1  1  1 X+3 2X+3  1  1  6  1  1  1  1  X  1  1  1  1  1  1  1  1  1 2X+3  1  1 2X+3 2X+6 2X+3  1  1  1 2X+3 2X  1  1  1  1  1  1 2X+3  1  1  1  1  1  1  X  1  1  1  1  0  6 2X+6  0  1  1 X+3  1  1  1  1  1
 0  1  0  0  3 2X+7 2X+1 X+8 X+7 X+2  1  8  1 X+6 2X+5 2X+7  1  3 X+3 X+1 X+5 2X+2 X+7  1 2X  1  1 X+8 X+3  3 2X+7  4  8 2X+6 2X+8  1 X+3 X+5  1  1 2X+1  0  1  2 X+1  X 2X+2  1 2X+6 2X+5 2X+7  6  2  8 X+7  1 2X+8  1 2X+1  4  X  1  1 X+5 2X  7 2X  1  X  1 2X+1  3 X+2  3  1 X+1 X+2  1  5  X 2X+8  1  7 2X+8 X+3 2X+5  1  1  1  1 X+2 X+1  X  5 2X  1  0  6
 0  0  1 2X+7  5  2 2X+1 X+3 X+6 X+5  7 X+1 2X+5  6 2X+7 2X+3 2X+6 2X+8  1 X+1 2X+6 X+2 2X+2  8  1 2X+1 X+2  4  5  1 X+5  0 2X+3 X+6  5 X+4  7  6 2X X+4 2X+8  X X+5  8 2X+3 X+4  7 X+7 2X+1 X+7 X+8 X+6 2X+5  0 2X+4  X X+5 X+5 X+4 X+3  1 X+6 2X+5 2X+6 2X+5 2X+6  1  0  3  2  7 X+7 2X+7 2X  1 2X  4 X+4  4 2X+8 2X+5  4  6 2X+6 X+7  X X+1  2  3  1 X+3  8  1  6  X 2X+8 X+2 2X+1
 0  0  0  6  6  6  6  6  6  6  0  6  0  6  3  0  3  0  3  0  0  3  0  3  3  3  6  0  3  6  3  3  3  3  0  3  0  0  6  6  3  3  3  3  6  6  3  0  0  0  6  0  6  3  3  6  0  0  0  0  6  6  3  6  0  3  0  3  3  0  6  3  3  6  6  3  6  6  6  6  6  6  0  0  3  3  0  6  0  3  0  0  3  6  0  6  0  0

generates a code of length 98 over Z9[X]/(X^2+6,3X) who�s minimum homogenous weight is 187.

Homogenous weight enumerator: w(x)=1x^0+684x^187+1086x^188+1876x^189+3804x^190+3828x^191+3238x^192+5292x^193+4386x^194+3472x^195+5160x^196+4476x^197+3680x^198+4566x^199+3342x^200+2284x^201+2952x^202+1662x^203+934x^204+1056x^205+552x^206+296x^207+234x^208+72x^209+4x^210+36x^211+18x^212+4x^213+12x^214+6x^215+6x^216+18x^217+12x^218

The gray image is a code over GF(3) with n=882, k=10 and d=561.
This code was found by Heurico 1.16 in 11.9 seconds.